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I. INTRODUCTION 

The rf cavity, wall resistivity, space-charge impedance, and other discontinuities 
of the vacuum chamber are sources that generate bunch shape distortions as well as 
emittance growth in both the longitudinal and transverse phase spaces. In this paper, 
only the longitudinal phase space is examined. The understanding of these distortions 
and growths arc extremely valuable in maintaining better performance of the accelerator 
or storage ring. Unfortunately, exact computations arc, in general, impossible. The 
Vlasov equation even when linearized can provide perturbative information only when 
some other additional approximations are assumed. The situation of having bunch 
omissions in some buckets or an unequal number of particles per bunch makes the 
problem almost insolvable. As a result, a numerical tracking may be appealing. The 
tracking is carried out turn by turn. In order to shorten the computation time in the 
longitudinal space, one is inclined to calculate the potential seen by each particle in each 
turn using impedances in the frequency domain rather than using the wake potential 
in the time domain. In the frequency domain, however, the tracking in the longitudinal 
phase space is usually more difficult than the tracking in the transverse phase spaces. 
This is because the betatron frequencies are much bigger than the revolution frequency, 
whereas the synchrotron frequency is very much smaller. 

ESME’ is an example of such a code. It tracks bunches turn by turn in the longi- 
tudinal phase space by assuming an energy loss of 

eK(6) = et.00 ,zm k%(m0)z(m0)ein8 , 0.1) 

for the ith turn. In the above, & is the discrete Fourier spectrum of the bunch in 
that particular turn, Z(w) is the longitudinal coupling impedance, wO is the angular 
revolution frequency of the synchronized particle, and 8 is the azimuthal angle along the 
storage ring. We would like to point out that Eq. (1.1); the dynamics of such tracking 
code, is nothing more than a tentative current-multiplied-by-impedance approach. As 
it stands, it is clear that it can at most represent some steady-state condition with 
all transient effects neglected. Therefore, such tracking in the frequency domain is 
definitely incorrect when the impedance Z(w) h as a time constant longer than the 
revolution period To = 27r/wo, or when the wake potential extends longer than one 
revolution of the storage ring. 

This paper is not a criticism on ESME. Th is is because, in the first place, ESME 
was written to simulate the acceleration process and to understand the various rf ma- 
neuverings in the Fermilab Main Ring and is not intended to deal with sharp resonant 
driving forces. In the second place, the author” of ESME is now trying to extend the 
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code to include driving impedance of sharp resonances. For these driving forces, he 
plans to track in the time domain instead.’ 

In this paper, we try to derive as rigorously as possible the energy loss per turn 
and indicate how it differs from Eq. (1.1). We also point out the condition under which 
Eq. (1.1) is correct. Some consequences of using Eq. (1.1) incorrectly are also discussed. 
Lastly, we point out how the tracking can be done correctly in the frequency domain 
when sharp resonant driving impedances are present. 

II. ENERGY LOSS PER TURN 

II.1 Canonical variable 

A particle in a beam is characterized longitudinally by 7, the time it arrives ahead 
of the synchronized particle at some pre-chosen reference point along the accelerator 
ring. We choose T as the canonical variable. The choice of other canonical variables is 
also allowed. 

II.2 Wake potential 

When a particle of unit charge traveling inside the vacuum chamber passes a struc- 
ture, it leaves behind a wake. The average longitudinal potential seen by another 
particle lagging a time 7 behind (Fig. 1) is called the wake potential W(7). Note that 
the averaging over the structure is very crucial. It makes the wake potential a function 
of 7 only and is independent of (1) the position of the leading particle relative to the 
structure, and (2) the lateral deviations of both particles from the axis of the vacuum 
chamber. Here, the particles travel with velocity V, which is less than c, the velocity of 
light. Thus, in general thereis no causality requirement. However, it is the space-charge 
part of the wake that violates causality. Therefore, when space-charge contribution is 
excluded, W(T) = 0 whkn’ 7 < 0. Even with’space charge, W(7) drops to zero very 
rapidly as T goes negative because the particle velocity is usually very close to c. 

II.3 Charge or current distribution 

To measure the charge or current distribution in a beam, we choose a fixed reference 
point in the storage ring and put a detector there (Fig. 2). We record the amount of 
charge arriving when the time advance is between T and T + dr. The result is p(T)dr, 
where p(~) is a measure of charge distribution. The actual linear charge density is 
A(T) =p(r)/v, where z1 is the velocity of the synchronized particle. Note that this charge 
distribution is measured at a fixed point but at different times. Therefore, it is no2 a 
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periodic function of 7. This is important because, unlike Eq. (l.l), the spectrum of the 
charge distribution no longer just singles out the harmonics of the revolution frequency. 
On the other hand, there is something called the snapshot distribution P(T)I~~~~,~~,, 
which is recorded by taking a snapshot camera picture above the accelerator ring. Here, 
we assume information at any point of the ring arrives at the camera at the same time. 
Thus, by definition, p(~)Im~P,ho, is a periodic function of the ring. This distribution is 
useful in mathematical derivations, but is not what we measure with a detector. The 
two are identical only when the distribution does not change with time. Obviously, 
this condition can never be realized because there is always synchrotron motion. The 
properties of the two distributions are summarized in Table I. 

P(T) 

Usual definition of 
charge density 

measured at fixed location 
but at different time 

not a periodic 
function of the ring 

P(T) I *nap.hot 

mathematical definition 
only 

measured at fixed time 
but at different location 

periodic function 
of the ring 

Table I: Comparison between charge density measured at a fixed location with charge 
density measured at a fixed time. 

The charge density also depends on during which turn it is measured. Therefore, 
there is an independent variable, the turn number. However, it is more convenient to 
introduce a continuous variable instead, so that the charge distribution measured at 
any other location along the accelerator ring can be described. Also, it is obvious that 
a continuous variable can be dealt with much more easily in mathematical derivations. 
Time is not a good variable and should not be used because it is complicated by 
synchrotron motion and the acceleration process. We choose instead s, the distance 
along the closed orbit of the synchronized particle along the accelerator. Thus, the 
charge density is written as P(T,s). Note that the canonical variable T is also an 
implicit function of 8. 

Since we are dealing with a bunched beam, it is easy to distinguish for one turn the 
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beginning and end of the charge distribution, which may contain many bunches. Thus, 
we can set 

P(7,S) = 0 except when z, < 7 < n, + To , (2.1) 

where 70 is some arbitrarily chosen reference time advance and To is the period of 
revolution of the synchronized particle for that particular turn. 

II.4 Potential seen by a particle due to a bunch 

A particle at B with time advance 7 will experience a potential V(T,S) due to a 
particle charge distribution. From the definition of the wake potential, this potential is 
given by3 

VT.1 8) = ,=F- LI d#p(#, 8 - kC)W(kTr, + # - T) , (2.2) 

where C is the length of the closed orbit of the synchronized particle, or C = ~2’0. 
The summation over k takes care of the contribution of the wake left by the charge 
distribution in previous turns. The lower limit of the summation can be extended to 
k = -co and the lower limit of the integration can be extended to r’ = --m, either 
when we consider the non-space-charge part of the wake where there is causality, or 
when we consider the space-charge contribution where there is no causality. Since the 
charge distribution is defined to carry values for one turn only in Eq. (2.1), the upper 
limit of integration can also be extended to r’= +co. 

In Eq. (2.2), 2’0 is assumed to be a constant. This is true when the particle beam 
is in storage. However, during an accelerating cycle, v increases turn by turn and To 
decreases turn by turn so that C remains constant. In that case, we need to make the 
replacement 

kTo + i Toi when k > 0 , (2.3) 

where Toi is the period for the previous i-th turn. It does not matter what the replace- 
ment is when k < 0, because the wake potential vanishes. Actually, the replacement in 
Eq. (2.3) is not quite necessary, because a wake will have a length of at the most a few 
turns, during which To will not change very much. 

When there are A4 bunches in the accelerator, we can introduce ~l(r, 8) as the charge 
density of the l-th bunch, where 7 is the distance advanced relative to the synchronized 
particle in the L-th bunch. Using Eq. (2.2), the potential experienced by a particle at s 
in the m-th bunch with time advance r can be written as 

dr’/u(r’,s - kC)W[kTo + (~1 - s,,,)/v + # - ~1 , (2.4) 
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where sl and s, are the positions of the synchronized particles in the !-th and m-th 
bunch, and (sl -s,) should not change from turn to turn. In the case of equally spaced 
bunches, 

l-mc 
81-s,=- . 

M (2.5) 

The longitudinal coupling impedance Z(w) of the structure in the vacuum chamber 
is defined as the Fourier transform of the wake potential by 

The charge distribution can also be Fourier analysed by 

p(r, s) = J-1 d+(w, spr . 

Then, for one bunch, Eq. (2.2) can be rewritten in the frequency domain as 

V(r, s) = ,=& l: cko&o, s - kC)Z(w)e-‘“(kTO-‘) . 

Similarly, for M bunches, Eq. (2.4) can be rewritten in the frequency domain as 

Vm(T, S) = ,=$- Mzl/el c+&, .g - kC)Z(w)e-“Ikro+(“‘-“-)/w-~l (2.9) 

We note that, with the definition of Eq. (2.1), the Fourier transform of the charge 
density in the variable T is for one turn only. Thus, the spectrum is continuous. The 
discrete nature comes about only when the charge distribution is measured for many 
turns (more correctly for infinite numbers of turns). The turn number is embedded in 
the variable s. As will be shown below in Eq. (3.9), we do ha& a discrete spectrum 
after summing up k from -co to +m. 

III. PERTURBATION OF CHARGE DISTRIBUTION 

III.1 Single bunch 

Let us first study the simple situation of having only one bunch. If a bunch is 
well fitted to the bucket to start with, the charge distribution will not change at all. 
Therefore, 

P(‘, 3 - kc) = PO(~) , 
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&I, s - kc) E j&o) . (3.1) 

The wake or coupling impedance can drive the bunch to oscillate in the bucket with 
frequencies Qn/2?rr n = 1,2, . . . . Since the rf provides a synchrotron oscillation frequency 
of ~,/27r, R, x nu, where n is an integer. These are eigen-frequencies, whose values 
can only be obtained by solving a Vlasov-like eigen-equation. But only the perturbed 
part will oscillate. Thus, the charge distribution can be written as 

,T(w, s - kc) = ,5,,(w) + c ,&,(w)e-in+kC)‘u , (3.2) 
n 

where c,,(w) are the perturbed distributions or eigenfunctions related to R,. Corre- 
spondingly, the voltage experienced can be written as 

V(T, s) = h(T) + c K(T, 3) . (3.3) 
n 

This is illustrated schematically in Fig. 3. 

Substituting Eq. (3.1) in Eq. (2.8), we get 

h(r, s) = 5 Jm hj,(w)Z(w)e-+kT”-l) . 
k=-m -= 

(3.4) 

With fro independent of 8, the summation over k can be performed. We obtain 

v,(r, 8) = w c hl(Po)Z(Po)=i~07 , (3.5) 
p=--m 

which is independent of s. This implies that as s increases, VL will not change. 

Equation (3.5) implies that V, will not grow at all, but it will lead to a change of 
the equilibrium bunch shape and a modification of the synchrotron frequency. This can 
also be understood by assuming ,that..the,exponent pwor/c is. small. Thus, 

e+or -1++w, 

so that Eq. (3.5) can be written simply as 

(3.6) 

IQ,,,) = A+BT, (3.7) 

where A and B are real constants. The voltage due to the unperturbed charge distri- 
bution is therefore a constant plus a force that is proportional to displacement when 
T is sufficiently small. The former distorts the bunch shape by shifting the center of 
oscillation, while the latter adds to the rf force and modify the synchrotron frequency. 
The result is a distorted bunch with higher density towards the front. 
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The part of the distribution that oscillates with frequency 0,/27r contributes to the 
potential 

dw~,(w)z(w)e-‘““(.-kC)/w-i”(kTO--r) . 

Again the summation over k can be carried out and we arrive at 

(3.8) 

Vn(T, 8) zz woe-iwv 5 i&% + n,)z(pw, + &&?+0+w~ . (3.9) 
p=-ca 

Equations (3.5) and (3.9) are the same as Eq. (2.2) but in the frequency space. 

III.2 Multi-bunches 

In order that the M bunches have coupled motions, the bunches must oscillate in 
particular patterns. For the L-th bunch (L = 0,. . . , M- l), the bunch density can be 
written as 

Pf(T, 3) = PO(T) + cc Pf”,(7)e-i”‘*a’” , 
n P 

(3.10) 

where the subscript p = 0 to M-l denotes the M coupled modes and n denotes other 
characteristic numbers. The eigen-frequency Q2,, and the corresponding perturbed dis- 
tributions or eigenfunctions pin,, are obtained by solving an eigen-equation like the 
Vlasov equation. The linearized Vlasov equation shows that the p-th coupled mode, 
defined as the oscillation of each bunch lagging the preceding one by a phase of 2?rp/M 
in a snapshot sense, is characterized by equally-spaced bunches with 

PfP&, 8 + (Sf - so)1 = h&4(‘, sPf@ , (3.11) 

where the subscript 0 represents the 0-th bunch. Note that for the p = 0 mode, all the 
bunches are oscillating in exactly the same way with the same phase at the same time 
but at different locations. 

” With only the coupled-mode frequency fl,/27r, th e extra potential seen by a particle 
in the m-th bunch is 

Vmn,(r, s) = ,=cm Mz1 LI dW~fn~(W)e-i”,,[~-kC-(sr-ao)I/ueil~~/M x 

xZ(w)e- iu[kTo+(q-*a)/“-r] 
, (3.12) 

where Eqs. (2.9) and (3.11) have been used. The summation over k can be performed 
readily giving 

m M-l 
K%n,(~, 8) = ido,gw z ~o,r(pwO+R,~)e-in~[u-(~~-‘o)l/uei3*~/M x 
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xZ(pwo+n,,)ei(~O+“-~)[r-(.f-.~)/ul . (3.13) 

In the case of equally spaced bunches, the summation over L can be performed easily 
with the help of Eq. (2.5) to give 

VL,(r, 8) = Mw= 
-in.r(*-mC/M)/veiln~(lM 2 &p(d)Z(d)eiu’r , (3.14) 

q=-m 

where 
co’ = (Mn+/L)wo + n, (3.15) 

IV. TRACKING IN THE FREQUENCY DOMAIN 

IV.1 Broad-band impedance on single bunch or multi-bunches 

Consider first the situation of having only one bunch. If the wake W(T) has a length 
7. that is shorter than one revolution of the ring, or the impedance Z(w) has a full width 
Aw, that is broad, i.e., 

To > r. = & , (4.1) r 

the exponential term exp(iwkTo) in Eq. (2.8) oscillates very fast when it is integrated 
over the broad band from w, - Aw,/2 to w, + Aw,/Z, where w, is the center of the 
broad band. Thus, only k = 0 contributes essentially, or 

V(T, s) x J &+qw, s).z(w)e-‘“’ . (4.2) 

Since the impedance is of a broad band nature, the integral can be further reduced to 
a discrete sum, and we have 

V(7, s) rz wo .gm bb4, sMP4=-i~o’ : (4.3) 

This is exactly Eq. (l.l), or what ESME uses. 

If there are M bunches, and if the length of the wake is less than the distance 
between two bunches, i.e., 

TO 1 

M’Tc=-7 AW (4.4) 

the factor exp[-iw(sl - sm)/u] in Eq. (2.9) will oscillate rapidly in the integration over 
w. Thus, only the same bunch L = m will contribute, and Eq. (2.9) will be reduced to 
Eq. (4.3) also. 
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IV.2 Narrow resonant impedance on single bunch 

Sometimes, the coupling impedance Z(w) is a narrow resonance with the width 
less than wo. Then, we cannot neglect the summation over k or the contribution from 
previous turns. This is, in fact, to be,anticipated, because the wake extends to more 
than one complete revolution. Furthermore, the integral over w cannot be reduced 
to a summation. Therefore, to perform tracking in the frequency domain, we have 
no choice but stick to Eq. (2.8), which is clearly different from Eq. (1.1) that ESME 
employs. The neglect of summation over past turns implies the failure to include 
transient effects. The reduction of the integral over frequency to a discrete sum over 
the harmonics explains why ESME cannot pick up the synchrotron satellites. As will be 
shown below, the satellites corresponding to positive frequencies contribute to growths 
while those corresponding to negative frequencies contribute to dampings. With only 
the harmonics of the revolution frequency, it is hard to visualize how the growths and 
dampings will evolve. As a result, it is natural that ESME, as it stands, will not be 
able to reproduce Robinson’s instability. 

Of course, in this case tracking can be done in the time domain using Eq. (2.2). 
However, we would like to investigate the way it can be performed in the frequency 
domain. We cannot use Eq. (3.9) because we do not know the eigen-frequencies II,, 
nor do we know distorted equilibrium density p. in Eq. (3.2). So we have to start with 
Eq. (2.8). But it is not as bad as it looks, because we only need to sum up in each case 
the past - we/Au, turns; where Aw, is the width of the resonant driving impedance. 
Let us investigate how such a tracking is carried out and what sort of results will be 
produced. 

We need to compute the energy gained by each particle in a turn, and real numbers 
are preferred. Let us start with a distribution 

p@, s) = PO(T) + pl(r)e”lO’Y co6 - . 
v 

where p. is a distribution that is well fitted to the bucket and the second term is some 
seed which oscillates with frequency flR/2n which is taken here as approximately the 
synchrotron frequency w,/27r for the lowest mode and grows exponentially at a rate of 
RI. In real tracking, such seed is not actually necessary, because ~0 is not the distorted 
equilibrium distribution and therefore the rf voltage will generate some seed from po 
automatically. Of course, Eq. (4.5) can be written simply as 

P(T,s) = PO(~) + B [p,(7)=-‘“+] , (4.6) 

where n = flR + ifir. 
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Let us concentrate on the seed because this is the source of growth. The seed may 
be of the form 

PI(r) - 
1 

sin Q 2m ITl<U, 
(4.7) 

0 otherwise , 

where u is a measure of the half length of the bunch. The spectrum of the seed is 

&qw) - -2 
sin wb 

c7 d - (27r/a)a . 

We do not care so much about the detailed form of the spectrum except that it is 
imaginary and odd in w. Also it should have a width 

the frequency of the resonant impedance. If not, the bunch will not be affected by the 
resonance. Then, from Eq. (2.8), the voltage seen by a particle due to the seed is 

K(~, s) = -J& C / & ~l(w)z(w)e-i(.-kC)“l”e-iw(kTo-r) . 
k>O 

(4.10) 

TO evaluate the perturbed potential, we have the choice of performing the integral 
first or summing over k first. Let us consider the situation where we perform the integral 
first. We are going to state the results here. The derivations are given in the Appendix. 
The result is 

&(r,s) = 7&w, 5 ~l(pwo+n)Z(~~+SZ)e’[(“~+“)~-“~/~l , (4.11) 
p=--m 

which is the same was Eq.. (3.9) as expected-. If ,the,grawth rate is extremely small, we 
may consider 0 as real. For a short bunch, (pwo + 0)~ is small. Neglecting this, the 
result becomes 

(4.12) 

where we have made use of the fact that zR(W) =?& Z(W) is even in w whereas 21(W) = 
&Z(W) and k(w) are odd. The contribution of p = 0 is negligible and has been 
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discarded. The second term in Eq. (4.12) begins with cosine which is in phase with 
the seed and therefore contributes to a change in synchrotron frequency. The first term 
begins with sine which is out of phase and therefore contributes to a growth for the 
pwo+B part or damping for the pwo-fi part. Note that these two parts are preceded 
by different signs. As a result; we have a growth’(daniping) if the the resonance peak is 
nearer to (farther away from) pwo+R than ~~0-0. This is just Robinson’s instability. 
Thus, the integration over w has to be performed with binning much finer than the 
minimum of Sl and AU,. But this is not too tedious to do because .Sn is very narrow. 
The term involving Zr comes with a plus sign. Since Zr is broad for a resonance, the 
second integral need not be done with very high accuracy with the exception of perhaps 
the small region around w = w,. 

The summation over k is the summation over the interaction of the bunch with 
the long wake field left by the narrow resonance. As is shown in the Appendix, a 
summation of ti 2 wo/(Aw,+Br) previous turns is required. Actually in tracking, we 
compute Eq. (2.8), the total potential. The perturbed potential is imbedded inside. 
Therefore, a high degree of accuracy is required. The integral over w is computed for 
each k 1 0 and stop at k = N where the contribution becomes negligible. Knowing 
V(T,S), the new current density can be computed. From it, we find the new spectral 
distribution. Then we go to the next turn. If N bins are used to store the spectral 
distribution, we need a storage size of NM. 

We can also do the summation over k in Eq. (4.10) first. As is shown in the 
Appendix, exactly the same result of Eq. (4.11) is obtained. Here, the summation 
over k is the summation over the perturbed density multiplied by an exponential, 

kp)e-+“)fi . (4.13) 

Here, w will be dominated by the poles of the impedance when the final integration 
over w is performed. ,Thus, although the contribution of each term in Eq. (4.13) will 
not decrease as k increases, the number of previous turns required in the sum is again 
ti 2 ws/(Aw,+Rr). The same amount of storage space will be required. There is an 
advantage to this alternate process, because only one integral over w will be required 
for each time advanced r. The price to pay is: the summation has to be done for 
each frequency of the distribution. Of course, in tracking we are not dealing with the 
perturbed density in Eq. (4.13). Instead, the sum is 

2 j(w, s - kC)ecikwTo , (4.14) 

where p(w, s - kc) is the total charge density at the k-th previous turn. As a result, a 
high degree of accuracy is required so that the seed can be picked up. 
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IV.3 Narrow resonances on multi-bunches 

Here, we have to start from Eq. (2.9) for the tracking. Either summing over k first 
or integrating over w first, we get something very similar to Eq. (4.12). Folding negative 
frequency onto positive frequency, the perturbed voltage involving Zn is 

V&T,S)(Z~ o( sin 528 21 ~{iiOl[(q~+~)~O+~]~R[(q~+~)~O+~] 

-i~Ol[(qM-IL)WO--]ZR[(PM-~)WO-~]) , (4.15) 

where iol is the density of the seed of the 0-th bunch. We see that if the driving 
resonance is near (qM+p)wo+R, it is also near [(q-l)M+(M-p)]ws-a. This implies 
that when coupled-bunch mode p is activated to grow, mode M-p is damped. This type 
of damping has never been reproduced by ESME.4 For this reason, we doubt whether 
the negative frequency-contributions have been handled correctly in ESME.s 

To have the bunches coupled, the length of the wake can be as short as the distance 
between two adjacent bunches, or the width of the resonance Aw, can be as wide as 
- M/To. For the Fermilab Booster, there is a rf parasitic resonance at fi - 85.8 MHz 
with Q - 3300. The width is Aw./2s- f,/Q = 26 kH z or a wake of characteristic length 
cQ/f, = 11.5 km or about 24 turns. On the other hand, the synchrotron frequency is 
w,/2x-2.2 kHz. Thus, the fR in Eq. (4.15) can be neglected and only sampling of the 
revolution harmonics will be accurate enough. For the same reason, in performing the 
integration over w, we only need binning 5 Aw,. However, there are two modes that are 
different. They are mode p= 0 and p = M/2 if M is even. Like the Robinson’s instability 
criterion, these modes will grow or damp depending on whether the center of the driving 
resonance is nearer to the +R or -0 satellites. Therefore, for these two modes binning 
< w, is required. There has been some studies of coupled-bunch instability induced by 
,? parasitic resonances in the Fermilab Booster using ESME.s Because of the neglect 
of contributions due to previous turns, the neglect of synchrotron satellites, and the 
possible mistreatment of negative frequencies, these studies may not have been correct. 

V. CONCLUSION 

We have shown that ESME, as it stands, is correct when the driving impedance 
is of broad band nature or when the wake does not extend to more than a revolution 
around the accelerator. For resonance that has a wake of length more than a revolution, 
Eq. (2.8) or (2.9) should be used, if we want the tracking to be performed in the 
frequency domain. The integral over w that involves 27s Z has to be done with binning 
5 We, the synchrotron frequency for the situation of a single bunch or for M bunches of 
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coupled mode p = 0 and M/2 (if M . 1s even). For the other coupled modes, the binning 
needs to be less than the width of the resonance only. The integral that involves XnZ 
can be done with much bigger binning. Of course, all the computations should have an 
accuracy that the seed can be picked up. 

To evaluate Eq. (2.8) or (2.9), we have the option of either doing the summation 
over k first or performing the integration over w first. In each case, a storage of NM 
is required, where N is the number points to store the charge spectral density and 
M 2 wo/(Awr + C2,) is the number of previous turns needs to be summed. 
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The voltage V(r, s) induced by the perturbed density in the frequency domain has 
been derived in Section III by summing over k from -cc to m. In this appendix, we 
try to derive the result by summing over previous turns only. This is what we do when 
tracking in the frequency domain. We do it in two ways: performing the integration 
first or performing the summation first. We point out the assumptions made in each 
method. 

For simplicity, we shall use the perturbed density jr(w) of Eq. (4.8). Note that the 
“poles” at w = *2x/a are spurious. In fact, with proper definition, br(w) is entire. 
Thus, we have the choice of positioning these two “poles” slightly below the real w-axis. 
The only assumption about the impedance Z(w) is that it has poles in the lower half 
w-plane only, which is a result of causality. Thus, in the integral of Eq. (4.10), there 
are poles in the lower half w-plane only. 

Let us denote by . 
R(w) = l d - (2*/(r)l 

the portion of fir(w) after the exponentially w-dependent parts have been removed. 
Then, Eq. (4.10) can be rewritten as 

K(T, s) = - % C e-‘“(~kc)“~~pl(Y)~(Y) [e-W-4 _ e-WTo-r+4] . 04 

k>O 

Noting that 1~1 < (r, the integration over w gives 

h(~, S) = ?Ze F c Res pr(w)Z(w)e-‘“‘I” x 
1 

i(u-fl)kToeiw(r+c) _ 2 e--i(4)kTOe--i‘+--T) II , (A.3) 
w=w< 

where wf denotes the poles of pr(w)Z( w w ic may be of any order, and Res denotes ) h h 
the corresponding residues. The summation over k can be performed yielding 

(A.4) 
The summation is justified when Zmwf - Sir < 0, with wf being the poles of Z(w). 
This is mostly true since Zmwf = -w,/ZQ = -AU,, and 0, > 0 for a growing seed to 
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our interest so that 1 exp[-i(w)--)Ts]] < 1, where Q and AU, are the figure of merit 
Q-factor and full width of the resonance. Therefore, in actual tracking the number of 
previous turns required is 

h’z x WO 

To(Aw+%) = Ahw,+Rr . 
(A.5) 

There may be cases where Rr < 0 for a finite period of time before it becomes 
positive. The above summation can be generalized to include such cases without fun- 
damental changes in the treatment, although the number N in Eq. (A.5) will have to 
be enlarged. 

When wf = f2rr/a are the poles of pr, there is in fact no summation, because only 
k = 0 contributes. When k # 0, the two terms in Eq. (A.3) actually cancel each other 
due to the fact that there are no poles in b(w) originally. It can be easily verified that 
for wf = f2n/a, the expression in Eq. (A.4) is in fact identical to the k = 0 contribution. 

Take the first term inside the square brackets of Eq. (A.4). It can be rewritten as 

e-i(u-fl)To eiw(o+r) e--i(~-“)T~/ae’(dl)(~+r)ei”(~+~) 

1 - e-i(w-fl)To = 2i sin(w - Cl)To/2 ’ (A.61 

and further as 
=i+p- [W - “]e;“(e+l) 

2isin(w-0)To/2 ’ 

NOW the summation formula 

iI 

$&= 
i 

sin rw 
,i”(.h) o<o<?r 

- ?r cot TV B=O 

(A.7) 

(A.81 

is used to obtain 

,-i(w-“)T,,+(o+I) eilv(o+r)/Ta ,;“(u+T) 

1 - .-i(w-“)To - 2:iPEw p - (w--)To/27r ’ (A.91 

Similarly, the second term in the square brackets of Eq. (A.4) can be reduced to a 
summation over p, 

e-il*p(~-r)/Toe-ifl(*-*) 

p - (~-0)Ts/27r ’ 
(A.10) 
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The net result is 

Vl(T,S) =7&-T Cc Res { ‘r$~~)) sinw’ae’(w’r-“‘/“) , (A.ll) 
P 1 Y=Y( 

where ws = 2r/To and we have used the abbreviation a~‘= pwo +n. We next make the 
assumption (to be proved below) that 

pl(w’)Z(w’) = c Res ( (A.12) 

and obtain 
&(T, 8) = R.ewo C ~l(W’)Z(W’)ei(u’r-“r/v) , 

P 
(A.13) 

which is exactly Eq. (4.11). 

We next start over again from Eq. (A.2) by performing the summation over k first. 
It is clear that for the first term in the square brackets, k = 0 does not contribute and is 
therefore excluded. Eventually the integration will be performed by closing the contour 
in the lower w-plane. We try to distort the contour from (-00, co) plus the lower half 
circle to C + C’. As shown in Fig. 4, C’ circles the poles of p(w) in the clockwise 
direction while C runs just above all the poles of Z(w) and closes by the lower half 
circle. Therefore, when Aw, + RI > 0, the contour C can be safely taken such that 
Zmw - fir < 0 along C (see Fig. 4). Then the summations over k can be carried out 
giving 

&(T,S) ==77e ~Jc+c,dqqw)Z(w)e-‘“s+ y+yy+;);y - 1 ~;~~;~~~),] . 
1’ 

(A.14) 
As is discussed above, we need not worry about the poles of,p(w) because the contribu- 
tion comes from only the term with k = 0 so that there is in fact no summation. If we 
terminate the series by summing up only the previous ti turns in tracking, ti is again 
given by Eq. (A.5). Equation (A.14) can now be written as 

K(T,S) = 7G 2 /c+c,dwp,(w)Z(w)e-‘“~iwx 

,-i(w-“)T~/l~i(~-n)(~+r)~i”(~+~) ,i(w-“)To/2,-i(~-“)(u-~)~-i”(~-~) 

x - 
2i sin(u-R)To/2 2i sin(w--62)Ts/2 1 , (A.15) 

and using again the summation formula in Eq. (A.8), 
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K(T,S) = a &Lzgm Jc+c,~~~(w)Z(~)=-i”““x 

,i(“+2dr,)(u+~) ,-i(fl+2v/To)(c-r) 
X 

p - (w - n)To/27r - p - (w-fl)To/2?r 1 ’ 
(A.16) 

or 

vl(T,S) = %- (A.17) 

where w’ = pwo+n. The new poles generated, w = pwo+51, are outside the contour 
C + C’ regardless of the sign of 01 since fir - Zmwf > 0. Doing the integration over w, 
we get 

&(T,S) = ae 4ni zpgm T Res { ~~(~~~~)}~=_sinu’ac’(w”-“‘/Y) , (A.18) 

which reduces to 

Vl(r, s) = F&w0 C ~l(W’)Z(W’)e’(Y’I-“~‘V) , 
P 

(A.19) 

which is the same as Eq. (A.13) when Eq. (A.12) is applied. 

Now we are ready to examine the validity of Eq. (A.12). In general, we can write 

pl(w’)Z(w’) = c R f es { h$)_Z~)}w=wt+ 9(4 j (A.20) 

where w’ is any point in the complex plane and g(J) is analytic at all the poles wt. For 
example, if wr is a pole of order n, 

Res { p1$~;‘}w=w4 = (nl 1)1 & ( (w - ~$~t;l’)z(w)}w=wz , 
C-4.21) 

In the special case that all the poles are of first order, Eq. (A.20) reduces simply to the 
more familiar form 

pl(w,)z(w,) = c R=sM4Z(w)l 
+ SW > 

f w’ - Wf 
(A.22) 

But with all the exponentially w’-dependent factors removed, &(w’)Z(w’) is analytic at 
w’ = 00. Therefore, g(J) can only be a constant. However, a dc resistance does not 
interact with the perturbed density. Thus, g(J) must vanish. 
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0 ------+v 
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Fig. 1. Wake potential W(T) is the electric field experienced by a test particle due to 
a source particle at a time T ahead. 
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Detector 

Distribution 

Fig. 2. The detector measures the charge or current distribution in a beam. Note that 
the measurement is made at a fixed location but at different times. 
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Fig. 3. A bunch distribution in the longitudinal phase space consists of a unperturbed 
part p&Y) which is fitted to the bucket and is therefore independent of s, plus a per- 
turbed part C,, pn(r’, s) which oscillates in the bucket. The voltage experienced by a 
test particle with time advanced T can be divided into a corresponding unperturbed 
part Vo(7) plus a perturbed part C,, Vn(r,s). 
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poles of L(pWo+n> 

X X 
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Fig. 4 The contour of integration from -oo to +m and closing by a semicircle of infinite 
radius in the lower w-plane is distorted into C’ which circles the poles at ~k27r/u and C 
which runs just above all the poles of Z( w an ) d 1 c oses by the lower half circle at infinity. 
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